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Abstract: Noninvasive Prenatal Testing (NIPT) serves as a crucial tool for prenatal screening. Given 

the high-dimensional, heterogeneous, and nonlinear characteristics of NIPT data, an analytical 

framework that balances accuracy with interpretability is essential for effective prenatal screening. 

We propose an interpretable PSO-XGBoost framework that integrates Spearman correlation for 

feature screening, PSO-based hyperparameter optimization, and SHAP analysis to predict fetal Y-

chromosome concentration. Experimental results demonstrate a significant positive correlation 

between fetal Y chromosome concentration and gestational age. The PSO-XGBoost model achieved 

an R² value of 0.958, indicating that the model exhibits high accuracy and robust stability. SHAP 

analysis further reveals that model predictions are primarily driven by core features such as X 

chromosome concentration, Y chromosome Z-score, and gestational age, with significant nonlinear 

interactions and individual variation present. Future integration of multimodal data could further 

improve the precision of prenatal diagnosis and clinical decision-making. 

1. Introduction 

With the rapid advancement of gene sequencing and biotechnology, non-invasive prenatal testing 

(NIPT) has become a significant tool in prenatal screening. Accurate prediction of fetal chromosomal 

concentration is central to NIPT and directly affects diagnostic sensitivity and specificity. However, 

NIPT testing data typically exhibits characteristics such as high dimensionality, strong sample 

heterogeneity, and complex nonlinear relationships between features. Traditional linear or parametric 

methods often underperform on such data because of rigid assumptions, leading to biased predictions. 

Therefore, a framework that couples high predictive accuracy with strong interpretability can enhance 

prenatal screening and advance data-driven precision medicine. 

In exploring fundamental biological correlations, non-parametric statistical methods such as 

Spearman's rank correlation provide preliminary evidence for understanding the influence of key 

variables. Yang et al.[1] employed Spearman analysis to investigate the relationship between fetal 

free DNA (FF) concentration and Z-score in NIPT results, revealing a significant positive correlation 

between the two in positive samples. Kim et al.[2] employed Spearman test to assess the relationship 

between FF and indicators of placental function, finding that low FF was significantly negatively 

correlated with multiple adverse pregnancy outcomes associated with placental dysfunction. Hanxiao 

et al.[3] employed Spearman's rank correlation analysis model to compute rank correlations for 

pedigree SNP (single nucleotide polymorphism) data in order to infer fetal haplotypes. The results 

demonstrated that the rank correlation model achieved a high positive predictive rate in paternal 

haplotype prediction. Duarte-Delgado et al.[4] employed Spearman test to assess the relationship 

between cytokine levels and clinical or haematological indicators, revealing that multiple cytokines 

demonstrated significant correlations with disease activity measures. Wu et al.[5] employed 

Spearman to investigate the effects of periodontitis on gut microbiota and faecal metabolites. Findings 

revealed that periodontitis significantly altered both the composition of gut microbiota and the faecal 

metabolite profile, with a marked correlation observed between gut microbiota and metabolites. 

To enhance direct predictive capabilities for high-dimensional non-linear data, researchers have 
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adopted a strategy combining ensemble optimisation algorithms with advanced machine learning 

models. Cao et al.[6] employed multi-feature selection combined with PSO to optimise XGBoost for 

constructing a cardiovascular disease prediction model. Results demonstrated significant 

improvements in metrics such as accuracy and AUC compared to the unoptimised baseline. Dias 

Júnior et al.[7] employed a hybrid model combining deep convolutional features with PSO-XGBoost 

for the automated classification of COVID-19 patients based on chest X-ray images. Results 

demonstrated that PSO-XGBoost outperformed the reference classifier across multiple metrics. 

Tseng et al.[8] integrated image segmentation with the PSO-XGBoost algorithm to construct an MRI 

brain tumour detection model, achieving an accuracy rate of 99.42%, significantly outperforming the 

comparison model. Radhakrishnan et al.[9] employed noise processing and stacked machine learning 

models to achieve automatic sleep staging in wearable devices. The results demonstrated an accuracy 

of 98.42% on public datasets, representing an outstanding performance. Zhou et al.[10] employed 

PSO to refine the hyperparameters of XGBoost. The results demonstrated an R² exceeding 0.98, with 

predictive accuracy and stability significantly surpassing conventional methodologies. 

To ensure transparency and trustworthiness in clinical decision-making for such complex models, 

interpretability frameworks such as SHAP have proven effective in quantifying feature contributions. 

Allgaier et al.[11] evaluated the interpretability of SHAP in medical machine learning models through 

a systematic review, demonstrating that SHAP effectively quantifies feature contributions and 

enhances the credibility and transparency of clinical decision-making. Vimbi et al.[12] conducted a 

systematic review comparing the interpretability of SHAP and LIME in the early detection of 

Alzheimer's disease. They confirmed that SHAP's global explanations outperform LIME's local 

analysis, thereby effectively enhancing the clinical credibility of the model. Luo et al.[13] employed 

the SHAP framework for feature selection and model interpretation to construct a predictive model 

for one-year readmission risk in elderly heart failure patients. The resulting model achieved an AUC 

of 0.87, significantly enhancing both interpretability and practical utility. Xu et al.[14] employed 

machine learning and SHAP to construct a predictive model for feeding intolerance in preterm infants. 

By quantifying feature contributions, they accurately identified core risk factors such as birth weight 

and feeding method, significantly enhancing the interpretability of clinical decision-making. Fan et 

al.[15] employed XGBoost and SHAP to construct an interpretable diagnostic model for knee 

osteoarthritis, achieving an AUC of 0.94. Through SHAP visualisation, they elucidated the specific 

contributions of key risk factors, which including BMI and knee joint injury—to diagnostic decision-

making. Lugner et al.[16] employed machine learning and the SHAP to analyse UK Biobank data, 

precisely identifying the ten key predictors of type 2 diabetes mellitus through SHAP. 

The organisational logic of the remainder of this paper is as follows: In Chapter Two, we shall 

systematically elaborate upon the constructed interpretable PSO-XGBoost algorithmic framework. 

This encompasses a feature selection method based on Spearman's rank correlation, the optimisation 

of XGBoost hyperparameters via PSO, the principles and workflow for constructing the PSO-

XGBoost model, and the establishment of a feature importance analysis framework utilising SHAP. 

In Chapter Three, we shall conduct experimental validation of the analytical framework constructed. 

Firstly, the data sources are specified, pre-processing is conducted, and the distribution characteristics 

of variables are described. Secondly, Spearman's correlation analysis is performed to assess the 

relationship between each indicator and the Y chromosome. Subsequently, the predictive 

performance of the PSO-XGBoost model is evaluated on the test set, with comparative analysis 

against the unoptimised XGBoost model. Finally, by integrating the SHAP method to analyse feature 

contribution in model predictions, the paper examines the influence mechanisms of each feature on 

Y chromosome concentration prediction from both individual sample and overall distribution 

perspectives. This enables a comprehensive evaluation of the proposed framework's efficacy and 

interpretability. 
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2. Method 

2.1 Spearman's Correlation Analysis of Characteristics 

Spearman's correlation is a non-parametric measure of a monotonic association between two 

variables based on the Pearson correlation of their ranks. It is based on the rank correlation coefficient 

and possesses a significant advantage in that it imposes no requirements on the characteristic 

distribution of variables, is insensitive to outliers, and can handle non-linear relationships. 

Accordingly, the Spearman coefficient is a rank-based measure that is robust to outliers and non-

normality, suitable for continuous variables and data that do not necessarily follow a normal 

distribution. The Spearman correlation coefficient 𝑟𝑠 is given by formula (1). 

𝑟𝑠 = 1 −
6 ∑ 𝑑i

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
(1) 

Where 𝑛 represents the number of observations, and 𝑑𝑖 represents the rank difference between 

𝑅(𝑥𝑖) and 𝑅(𝑦𝑖). The rank difference of a number is the position it occupies after the numbers in its 

column have been sorted in ascending order. 

The Spearman correlation coefficient ranges from -1 to 1. The closer the Spearman correlation 

coefficient is to 0, the weaker the relationship between the two variables; the closer its absolute value 

is to 1, the stronger this relationship. A negative values indicate negative correlation, while positive 

values indicate positive correlation. 

2.2 Chromosome Concentration Prediction Based on PSO-XGBoost 

2.2.1 Principles of XGBoost 

XGBoost is an ensemble learning algorithm based on Gradient Boosting Decision Trees (GBDT). 

It iteratively trains decision trees on the residuals of prior models and combines them into a weighted 

ensemble. Key advantages include L1/L2 regularisation to mitigate overfitting and support for 

parallel computation. This enables effective handling of complex nonlinear relationships and 

demonstrates robust fitting capabilities. It demonstrates particularly outstanding performance in 

scenarios involving high-dimensional data and numerous features. During XGBoost operation, the 

construction of each decision tree is associated with the stepwise minimisation of the loss function. 

Assuming the current model is f, the next step aims to minimise the following objective function: 

min
𝜃

∑ 𝐿

𝑛

𝑖=1

(𝑦𝑖 , 𝐹𝑚(𝑥𝑖) + 𝑓(𝑥𝑖; 𝜃)) (2) 

Here, 𝐿 denotes the loss function; 𝑦𝑖 represents the actual value; 𝐹𝑚(𝑥𝑖) signifies the current 

model's predicted value; and 𝑓(𝑥𝑖; 𝜃)  indicates the newly incorporated base learner. XGBoost 

approximates the loss function using a second-order Taylor expansion to optimise the objective 

function: 

𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖) + 𝑓(𝑥𝑖; 𝜃)) ≈ 𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖)) + 𝑔𝑖𝑓(𝑥𝑖) +
1

2
ℎ𝑖𝑓(𝑥𝑖)2 (3) 

Where 𝑔𝑖 denotes the first derivative; ℎ𝑖 represents the second derivative. 

2.2.2 PSO(Particle Swarm Optimisation) 

Particle Swarm Optimisation (PSO) is an optimisation algorithm inspired by the foraging 

behaviour of flocks of birds, which employs collective search to find optimal solutions. Each particle 

updates its position using its personal best and the global best, gradually converging to an optimal 

parameter set. In PSO, each solution is regarded as a 'particle', which explores the optimal solution 

by continuously adjusting its position within the search space. The movement of particles is 

influenced by their own historical optimal positions and the optimal positions of other particles within 

the swarm. Based on this information, they adjust their velocity and position to progressively 
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approach the global optimum solution. Each particle possesses two crucial attributes: position and 

velocity. The position update and velocity update formulas in PSO are shown in equations (4) and (5) 

respectively: 

xi
(t+1)

= xi
(t)

+ vi
(t+1)

(4) 

vi
(t+1)

= wvi
(t)

+ c1r1(pi
(t)

− xi
(t)

) + c2r2(g(t) − xi
(t)

) (5) 

Where 𝑥𝑖
(𝑡)

 denotes the position of particle 𝑖 at time 𝑡; 𝑣𝑖
(𝑡+1)

 indicates the velocity of particle 

𝑖 at time 𝑡 + 1; 𝑣𝑖
(𝑡)

 represents the velocity of particle 𝑖 at time 𝑡; 𝑝𝑖
(𝑡)

 represents the historical 

optimal position of particle 𝑖 at time 𝑡; 𝑔(𝑡) signifies the global optimal position within the swarm; 

𝑤 implies the inertia weight; 𝑐1 and 𝑐2 denote acceleration constants; 𝑟1 and 𝑟2 denote random 

numbers generated within the interval [0,1]. 

In summary, the main steps of the traditional PSO algorithm are as follows: 

Step 1: Initialisation. Set the population size, initial particle positions and velocities, and 

parameters w、𝑐1、𝑐2, and 𝑡; 

Step 2: Evaluate individuals. Calculate the fitness of each particle in the population; 

Step 3: Update the particle's individual best position 𝑝𝑖
(𝑡)

 and the global best position 𝑔(𝑡); 

Step 4: Update the particle's velocity and position respectively using the given velocity formula 

and position formula; 

Step 5: Determine whether the termination condition is satisfied. If satisfied, output the global 

optimum solution; otherwise, proceed to Step 2 and repeat Steps 2 to 5. 

2.2.3 PSO-XGBoost model 

1) Initialise particles 

First, initialise the position and velocity of the particles, where each particle is represented as a set 

of parameters comprising the 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑚𝑖𝑛_ℎ𝑖𝑙𝑑_𝑒𝑖𝑔ℎ𝑡 values from the XGBoost model. 

The position and velocity of particles in PSO are as follows: 

𝑥𝑖 = (𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑖 , 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑖) (6) 

𝑣𝑖 = (𝑣𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒, 𝑣𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡) (7) 

2) Evaluation of Fitness Functions 

The position of each particle (i.e., the hyperparameter combination) is used to train the XGBoost, 

with its fitness assessed by calculating the model's 𝑅2 value. The objective is to maximise 𝑅2, hence 

the fitness function 𝑓(𝑥𝑖) is defined as: 

𝑓(𝑥𝑖) = 𝑅2 = 1 −
∑ (𝑛

𝑖=1 𝑦𝑗 − 𝑦̂𝑗)2

∑ (𝑛
𝑖=1 𝑦𝑗 − 𝑦̄)2

(8) 

Here, 𝑦𝑖 denotes the true value of Y chromosome concentration in 𝑖 sample; 𝑦̂𝑗 represents the 

predicted value based on the XGBoost model; 𝑦̄  signifies the mean value of Y chromosome 

concentration; and 𝑛 indicates the number of samples. 

3) Update the position and velocity of particles 

Update the position and velocity of each particle according to the above formulae (4) and (5). 

4) Update the global optimum solution 

For each particle, if its fitness value 𝑅2 is superior to that of the current global optimum solution, 

the global optimum solution is updated. That is, the global optimum solution is the particle position 

with the highest 𝑅2 value. 

5) Stop condition 

When the positional changes of all particles within the particle swarm become negligible and the 

fitness 𝑅2 approaches stability, the algorithm may be deemed to have converged. The parameters at 

this juncture constitute the optimal parameters (𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑏𝑒𝑠𝑡 , 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑒𝑠𝑡). 

After selecting the optimal parameters, serialise the model (e.g., with pickle) for subsequent 
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evaluation and use. 

2.3 Feature Importance Analysis Based on SHAP 

SHAP is a post-hoc interpretability method derived from Shapley values in cooperative game 

theory. Its core methodology borrows from game theory used to calculate the relative contributions 

of different participants within a coalition. It can be used to quantify the marginal contribution of 

each input feature in predicting a single sample, combining both global and local interpretability. 

SHAP can decompose a model's prediction output into the cumulative effects of individual features, 

thereby assigning importance scores to each feature within the model. By evaluating the SHAP values 

of each input variable, we measure their contribution to the predicted value, thereby enabling a 

quantitative attribution analysis of the model's prediction results. The greater the SHAP value, the 

greater the contribution of the input feature to the predicted value. The SHAP interpretability method 

is used to provide explanations for trained models. The formula for calculating the SHAP value 

corresponding to the prediction factor is: 

𝜙𝑖 = ∑
∣ 𝑆 ∣ ! (∣ 𝑀 ∣ −∣ 𝑆 ∣ −1)!

𝑀!
𝑆⊆𝑀∖{𝑖}

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] (9) 

Where 𝑀 denotes the set of all predictive factors; 𝑆 denotes any subset of the set of predictive 

factors that excludes factor i; 𝑆 ∪ {𝑖} denotes any subset of the predictive factors that includes factor 

i; 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) denotes the result fitted from the set of predictive factors 𝑆 ∪ {𝑖}; 𝑓𝑆(𝑥𝑆) denotes 

the result fitted from the set of predictive factors 𝑆. 

Unlike traditional feature importance assessment methods (such as tree-based Gain or Split), 

SHAP not only ranks the overall contribution of features but also reveals, at the level of each 

individual sample, the specific direction and magnitude of how the value of a feature influences the 

model's output. It is currently one of the mainstream tools for explaining black-box models. 

3. Experiment 

3.1 Data description 

This paper employs the NIPT-related data provided in 

https://www.mcm.edu.cn/upload_cn/node/759/SvpohSGacdffe718bcaa3b6e835c03ae3461cab1.zip 

to validate the performance of the proposed method. This dataset comprises two sub-datasets: 'male 

foetus detection data' and 'female foetus detection data'. The present study utilises the 'male foetus 

detection dataset', which contains 1,082 samples and 31 variables. 

Our analysis focuses on associations between Y-chromosome concentration and predictors such 

as gestational age and maternal BMI. Given that male foetuses possess an XY sex chromosome 

configuration, the X and Y chromosomes exhibit a strong association, and GC content serves as a 

crucial indicator in assessing sequencing data quality. Therefore, the data in this paper retains only 

variables relevant to the research objectives, including the pregnant woman's code, age, height, 

weight, detection of gestational age, pregnant woman’s BMI, GC content, X chromosome Z-value, 

Y chromosome Z-value, X chromosome concentration, and Y chromosome concentration. All other 

irrelevant characteristic variables have been removed. The 11 variables are described in detail as 

shown in Table 1. 

In accordance with the reliability standards for NIPT testing, this paper combines data from 

pregnant women with identical maternal codes based on the Y chromosome threshold concentration, 

retaining only data meeting the threshold. For outliers in GC content, data exceeding the normal range 

were excluded. However, considering that minor fluctuations may occur in the data and values close 

to the normal range still hold reference value, GC data approaching the standard range were retained 

to ensure data integrity and representativeness. Finally, we converted gestational age to a numeric 

format and imputed missing values using the mean. Identify outliers by plotting box plots and 

removing data points that are clearly anomalous. To illustrate the distribution of each indicator more 
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clearly, box plots have been constructed for each metric, as shown in Figure 1. 

Table 1 Specific Descriptions of Variables 

Sequence Variable name Variable Specification Type 

01 
Pregnant Woman 

Code 

The same pregnancy code refers to the same 

pregnant woman. 
Text 

02 Age Age of pregnant women Integer 

03 Height Height of pregnant women Integer 

04 Weight Weight of pregnant women 
floating-point 

number 

05 
Detection of 

gestational age 

Gestational age at the time of this 

examination (weeks + days) 
Text 

06 
pregnant woman’s 

BMI 
BMI Index of pregnant women 

floating-point 

number 

07 GC content 

The proportion of the bases G (guanine) and 

C (cytosine) within a sequence constitutes a 

crucial metric for assessing sequencing data 

quality. The normal GC content range is 40% 

to 60%. An excessively high or low GC 

content, or an abnormal distribution, may 

indicate issues with sequencing quality. 

floating-point 

number 

08 
X chromosome Z-

value 
Z-value of the X chromosome 

floating-point 

number 

09 
Y chromosome Z-

value 
Z-value of the Y chromosome 

floating-point 

number 

10 
X chromosome 

concentration 

X chromosome concentration (whose value is 

estimated through bioinformatics analysis of 

data under certain assumptions and may yield 

negative values) 

floating-point 

number 

11 
Y chromosome 

concentration 

The proportion of free Y-chromosome DNA 

fragments 

floating-point 

number 

 

Figure 1 Box Plots for Various Indicators 
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Figure 1 results indicate that Age, Weight, BMI, GC content, Z-value of the X chromosome, Z-

value of the Y chromosome, and Y-chromosome Concentration exhibit relatively symmetrical 

distributions with a small number of outliers, reflecting moderate variability. Among these, BMI, GC 

content, Z-value of the X chromosome, Z-value of the Y chromosome, and Y-chromosome 

Concentration show more concentrated distributions. Height exhibits a slight right skew with one 

outlier on the left, indicating a more dispersed distribution. Detection of Gestational Age shows a 

pronounced right skew and the widest distribution range, though no outliers are present. The outliers 

identified in the figure were subsequently removed. 

3.2 Results of Spearman's correlation analysis 

To analyse the correlation between fetal Y chromosome concentration and maternal gestational 

age, BMI, and other indicators, a Spearman correlation matrix was constructed, and a correlation 

diagram was plotted as shown in Figure 2. 

 

Figure 2 Spearman Correlation Matrix 

Figure 2 shows a significant positive correlation between Y-chromosome concentration and 

gestational age, and no significant association with BMI. The former finding aligns with established 

medical knowledge. During the early stages of pregnancy, the concentration of fetal cell-free DNA 

is relatively low, particularly with regard to Y chromosome DNA, which may not reach detectable 

levels. However, as the pregnancy progresses, the concentration of fetal DNA gradually increases; 

consequently, an extended gestation period is typically associated with a rise in Y chromosome DNA 

concentration. Although no significant direct correlation was observed between BMI and Y 

chromosome concentration, BMI holds considerable importance in subsequent predictive analyses. 

This suggests that BMI may indirectly influence fetal Y chromosome concentration by affecting 

factors such as the overall health and metabolic rate of the pregnant woman. 

3.3 PSO-XGBoost Prediction Results 

Using Python to define a function for finding the maximum 𝑅2  and optimal parameter 

combination, the solution results are as shown in Table 2: 

38



Table 2 Changes in R² Fitness 

Number of 

iterations 
1 2 3 4 5 6 7 8 9 10 

𝑅2 Fitness 0.9556 0.9564 0.9564 0.9573 0.9573 0.9573 0.9573 0.9582 0.9582 0.9582 

As shown in Table 2, after 10 iterations, the optimal solution yields an R² value of 0.9582, 

approaching 1 and demonstrating high significance. The optimal parameters are subsample  = 

0.8201726 and minchildweight = 1. 

 

Figure 3 Change in R² Fitness 

Figure 3 illustrates the trend of the R² fitness function during the iteration process of the PSO 

algorithm. From the graph, it is clearly observable that during the early stages of iteration, the R² 

fitness value exhibits a pronounced upward trend, reflecting the PSO algorithm's ongoing exploration 

towards more optimal solutions. Upon reaching the third iteration, the model commenced its 

convergence phase. The R² fitness value gradually stabilised during subsequent iterations, ultimately 

settling at approximately 0.9579. As the number of iterations increased further, by the tenth 

generation, the model successfully identified the global optimum solution. This behaviour, wherein 

the fitness value rapidly increases during the iterative process before stabilising and converging to 

ultimately locate the global optimum, fully demonstrates that the PSO-XGBoost model possesses 

excellent optimisation performance and stability. It is capable of efficiently and reliably searching for 

optimal solutions in optimisation tasks. 

Call the optimal model via Python's scikit-learn library for metric evaluation. The processed data 

is divided into training and test sets, which are then input into the optimal model to compute the 

model error metric. Subsequently, the error metrics of the optimised model were compared with 

XGBoost, with the results presented in Table 3: 

Table 3 Model Error Metrics 

Indicator PSO-XGBoost Performance XGBoost Performance 

MAPE 6.56831 28.69994 

RMSE 0.00757 0.025026 

MAE 0.00546 0.01781 

R2 0.9579 0.5392 

As shown in Table 3, the MAPE of the PSO-XGBoost model stands at 6.57%, significantly lower 

than the 28.70% recorded for the unoptimised XGBoost model. The optimised model achieved an R² 

value of 0.958, indicating an excellent fit. The root mean square error (RMSE) obtained from the 

optimal model optimised using PSO is marginally higher than the mean absolute error (MAE). This 

indicates that although a small number of samples with significant prediction deviations remain 
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within the optimised model, both the overall absolute error and root mean square error are maintained 

at low levels. These results indicate well-controlled predictive error. Both RMSE and MAE are 

substantially lower than the baseline. Moreover, the optimised model exhibits a goodness-of-fit 

approaching 1, markedly exceeding the pre-optimisation value, demonstrating a substantial 

improvement in the PSO-XGBoost model's fitting performance following optimisation. This 

indicates that the optimal XGBoost model obtained through PSO-optimised hyperparameters 

demonstrates significantly enhanced performance, exhibiting greater stability and higher predictive 

accuracy. 

3.4 SHAP analysis results 

To more intuitively reveal the mechanisms by which various features in the pregnant women 

dataset influence Y chromosome concentration, SHAP plots were generated to visualise the 

distribution of SHAP values for each feature within the samples. This quantifies the contribution of 

each feature to the model's prediction of Y chromosome concentration outcomes. The results are 

shown in Figure 4. 

 

Figure 4 SHAP distribution plot 

As shown in Figure 4, the horizontal axis represents SHAP values, indicating the degree of 

influence each feature exerts on Y chromosome concentration, while the vertical axis denotes the 

respective features. In SHAP summary plots, colours encode feature values (blue = low, red = high), 

while the horizontal axis shows SHAP values. A positive value indicates a positive contribution to 

the forecast result, while a negative value indicates a negative contribution. 

From the distribution of SHAP values for the features, the SHAP values for X-chromosome 

Concentration exhibit a broad range, spanning from negative to positive values. This indicates that 

this feature significantly influences the prediction of Y-chromosome concentration, with its 

contribution varying markedly across different samples. The SHAP values for the Z-value of the Y 

chromosome predominantly cluster in the positive region, indicating that this feature makes a positive 

contribution to predicting Y chromosome concentration in the majority of samples. Gestational age 

shows a moderately concentrated SHAP distribution with some spread, indicating directionally mixed 

contributions across samples. The SHAP value distribution for GC content similarly exhibits distinct 

positive and negative intervals, indicating that GC content contributes ambivalently to the prediction 

results. The SHAP value distributions for the features Pregnant Woman's BMI, Age, Weight, Z-value 

of the X chromosome, and Height are relatively narrow. Notably, Pregnant Woman's BMI exhibits 

only a sparse distribution in certain local regions. This indicates that these physical characteristics 
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exert a minor influence on predicting Y chromosome concentration, primarily serving as secondary 

corrective factors. 

By combining colour with SHAP values, it is evident that the majority of feature samples fluctuate 

within the SHAP value range [-0.02, 0.02]. This indicates that individual features exert limited 

influence on Y chromosome concentration predictions. However, the cumulative SHAP values of 

multiple features collectively exert a significant effect, jointly determining the predicted Y 

chromosome concentration. Concurrently, the alternating red-blue patterns and dispersed 

distributions observed in the feature distributions also reveal a pronounced non-linearity in the 

influence of characteristics such as X chromosome concentration, gestational age, and BMI upon 

predicting Y chromosome concentration. Furthermore, different samples exhibit significant 

individual variation under the influence of these features, potentially suggesting the presence of other 

latent feature interactions within the samples that may subsequently impact the prediction of Y 

chromosome concentration. 

To further elucidate the operational mechanism of features at the individual sample level, a SHAP 

plot was generated for the third sample, as depicted in Figure 5. This provides a visual representation 

of each feature's specific contribution to predicting the Y chromosome concentration for this 

particular sample. 

 

Figure 5 SHAP plot for the third sample 

Figure 5 results indicate that the model baseline value is approximately −2.4, with the final 

predicted value being −2.81, suggesting a strong overall negative feature contribution. Among these, 

X-chromosome concentration made the most significant negative contribution, being the primary 

factor pulling down the predicted results. The Z-value of the Y chromosome exhibits a positive 

contribution, partially offsetting the negative effects. Detection of gestational age and GC content 

both exerted a moderate negative influence, whereas weight demonstrated only a slight positive effect. 

This aligns with the overall pattern observed in Figure 4: X chromosome concentration exerts the 

most significant and directionally inconsistent influence on predicting Y chromosome concentration, 

while gestational age and GC content exhibit bidirectional effects, and morphological variables exert 

a weaker influence. Overall, the decline in predictions for this sample was primarily driven by 

negative characteristics such as X chromosome concentration and gestational age, reflecting the 

model's high sensitivity to these features and potential non-linear interactions. 

4. Conclusion 

When confronted with high-dimensional, heterogeneous NIPT data exhibiting complex 

nonlinearity, traditional linear or parametric methods are prone to systematic bias due to overly 

stringent assumptions. In summary, a high-precision, interpretable framework enables more accurate 

prediction of fetal chromosomal concentration, improving screening performance and supporting 

data-driven precision medicine. 

This paper constructs an interpretable PSO-XGBoost algorithm framework. First, variables were 

filtered through data preprocessing, employing Spearman's correlation analysis to assess the 

relationship between indicators and Y-chromosome concentration. Subsequently, a PSO-XGBoost 

model was utilised to predict Y-chromosome concentration, with results compared against a baseline 

model. Finally, the SHAP method was applied to analyse feature contributions at both the individual 

and overall levels. 

The results indicate that the Spearman correlation matrix demonstrates a significant positive 

correlation between fetal Y chromosome concentration and gestational age, whilst showing no 

significant correlation with BMI. The PSO-XGBoost model achieved an R² value of 0.958, 

demonstrating excellent fitting performance. The MAPE, RMSE, and MAE were all significantly 
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lower than pre-optimisation values, indicating enhanced stability and higher predictive accuracy for 

this model. SHAP analysis indicates that model predictions are driven by a small number of core 

features, including X chromosome concentration, Y chromosome Z-value, and gestational age, with 

significant nonlinear interactions and individual variation observed among these features. 

In the future, as clinical information continues to accumulate, this research framework may further 

incorporate multimodal features such as genomic sequences and epigenetic markers to construct 

integrated predictive models that fuse multidimensional information. This approach will 

comprehensively enhance the precision of prenatal screening and diagnostic treatment. 
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